Skip to main content

Nerif Core

Core component in Nerif project is nerification, nerif and nerif_match.

Nerification

Nerification := Not only Verification

Base class: NerificationBase

This class is used to verify the result of the Nerif. This class provides base functionality for verifying and matching values against a predefined set of possible values.

Attributes:

  • original_options (List[Any]): Original list of possible values before conversion
  • possible (List[str]): List of possible values converted to lowercase strings
  • embedding (SimpleEmbeddingModel): Model used for generating embeddings

Methods:

  • convert(val: Any) -> str: Converts a value to lowercase string format

  • verify(val: Any) -> bool: Checks if a value exists in the possible values list

  • simple_fit(val: Any): Uses embeddings to find the closest matching possible value

  • force_fit(val: Any, similarity="cosine"): Uses embeddings to find the closest matching possible value

Based on the base method, we implement different value check strategy:

Nerification, NerificationInt and NerificationString

Example:

from nerif.core import Nerification
from nerif.core import NerificationInt
from nerif.core import NerificationString

nerification = Nerification(model="text-embedding-3-large")

print(nerification.simple_fit("yes, it is"))
# result: None
print(nerification.force_fit("yes, it is"))
# result: True
print(nerification.simple_fit("true"))
# result: True
print(nerification.force_fit("true"))
# result: True

nerification_int = NerificationInt(model="text-embedding-3-large", possible_values=[1, 233, 343])

print(nerification_int.simple_fit(1))
# result: 1
print(nerification_int.force_fit(1))
# result: 1
print(nerification_int.simple_fit(233))
# result: 233
print(nerification_int.force_fit("The value is 233"))
# result: 233
print(nerification_int.simple_fit(343))
# result: 343
print(nerification_int.force_fit("The value is 343"))
# result: 343

nerification_string = NerificationString(model="text-embedding-3-large", possible_values=["YES", "NO"])

print(nerification_string.simple_fit("yes"))
# result: YES
print(nerification_string.force_fit("Well, I guess you are right"))
# result: YES
print(nerification_string.simple_fit("no"))
# result: NO
print(nerification_string.force_fit("Oh, I don't think so"))
# result: NO

Nerif & Nerif Match

nerif_workflow

Overview

The Nerif and Nerif Match components provide robust mechanisms for controlling and interpreting LLM outputs. They address common challenges like overly verbose responses or inconsistent formatting by using a dual-mode approach: logits mode and embedding mode.

How It Works

LLM outputs can sometimes be unpredictable - they may include unnecessary pleasantries or irrelevant information. To handle this, we employ two strategies:

  1. Logits Mode

    • Uses the LLM's logits API to get top-k most probable token outputs
    • Faster but may be less accurate
    • Not available on all LLM services
  2. Embedding Mode

    • Activates if logits mode fails or is unavailable (You can also call embedding mode directly)
    • Generates analysis of the input and compares embeddings with possible options
    • More reliable but slower
    • Guarantees a result in one attempt

The workflow diagram above illustrates this process.

Nerif Class

The Nerif class evaluates the truthfulness of statements using both logits and embedding modes.

Attributes:

  • model: str - LLM model name (default: NERIF_DEFAULT_LLM_MODEL)
  • embed_model: str - Embedding model name (default: NERIF_DEFAULT_EMBEDDING_MODE)
  • temperature: float - Model temperature, defaults to 0
  • counter: Optional[NerifTokenCounter] - Token usage counter
  • debug: bool - Debug mode flag

Key Methods:

  • logits_mode(text: str) -> bool - Evaluates using logits analysis
  • embedding_mode(text: str) -> bool - Evaluates using embedding comparison
  • judge(text: str, max_retry: int = 3) -> bool - Main evaluation method
  • instance(text: str, max_retry: int = 3, model: str = NERIF_DEFAULT_LLM_MODEL, debug: bool = False) -> bool - Creates and runs a new instance

Example:



Nerif Match Class

The Nerif Match class selects the best matching option from a list of choices.

Attributes:

  • choices: List[str] - Available options to match against
  • model: str - LLM model name (default: NERIF_DEFAULT_LLM_MODEL)
  • embed_model: str - Embedding model name (default: NERIF_DEFAULT_EMBEDDING_MODEL)
  • temperature: float - Model temperature, defaults to 0
  • counter: Optional[NerifTokenCounter] - Token usage counter

Key Methods:

  • logits_mode(text: str) -> int - Matches using logits analysis
  • embedding_mode(text: str) -> int - Matches using embedding comparison
  • match(text: str, max_retry: int = 3) -> int - Main matching method
  • instance(choices: List[str], text: str, max_retry: int = 5, model: str = NERIF_DEFAULT_LLM_MODEL, embed_model: str = NERIF_DEFAULT_EMBEDDING_MODEL, debug: bool = False, counter: Optional[NerifTokenCounter] = None) -> int - Creates and runs a new instance

Example:

Instant Mode

Some times for a super fast use, we can start a instant mode. In Nerif project, we provide 2 function to simplify the API call: nerif and nerif_match.